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ABSTRACT

A method 1s presented for the calculation of a MHD equilibrium for an
axisymmetric compact torus. The plasma pressure 1s assumed to be a scalar
quantity. The plasma and magnetic fields are determined by given adiabatic
quantities, entropy, poloidal and toroidal magnetic flux.

The equilibrium calculation proceeds by alternating between the solution
of the 2-D Grad-Shafranov equation and a 1-D flux surface average of this

equation.

The 2-D calculation utilizes flux surface -coordinates and finite elements.
The poloidal flux function, ¥, is computed on an approximate flux surface
coordinate system (x, A). The points describing the y surface are moved to

coincide with the surface of constant V.

The 1-D step computes the volume enclosed by each surface. The
calculation 1is necessary due to the equilibrium being specified by adiabatic

quantities. :

Three examples of equilibria computed by this method are presented, two
spheromaks and one FRC.

*Work performed under the auspices of -the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-ENG~48.
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I. Introduction

A compact torus 1s a configuration where the plasma region extends to the
axlis of rotational symmetry. The magnetic field structure forms two regions
divided by a separatrix, see Fig. (1). Ingide the separatrix the magnetic
field lines form closed nested toroidal surfaces, flux surfaces. Outside the
separatrix the field lines are open. The presence of the separatrix in the
region of interest 1is one of the features of a compact torus. A magnetic field
vortex point, or o-point, is enclosed by the separatrix, see Fig. (1). The
procedure given here could be also used to determine equilibrium for other
axisymmetric configurations, such as, tokamaks and field reversed pinches.
Thegse equilibria calculation would be simpler due to there not being a

geparatrix in these configuration.

Numerically determined equilibria are used in conjunction with transporf,
compression and stability calculations. The transport calculations referred to
here computes the evolution of the plasma and magnetic field by alternating
between the solution of a 2-D equilibrium and a 1-D transport calculaqionlll.
This type of transport code is generally referred to as a L%D transport
code[zl. Codes of this type have been used to simulate tokamak
expe;iments.[3’4’5]._

Other possible uses of the code described here are adiabatic compression
studies and initialization of MHD stability calculations. Since adiabatic
quantities are used to specify the equilibrium, compression studies can-be made

by computing a series of equilibria with different boundary conditions.

Compression of compact toroids can be dome by flux compression or wall
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compression[6]. Numerical equilibria are useful in MHD stability calculations
as initial condition for fast time scale evolution codes. Also, some stability

critera[4] involve integrals over equilibrium flux surfaces.

The equilibrium code described in this paper was developed as a
replacement for the equilirium calculation used in the transport code described
in Ref. (1l). The.equilibrium calculation descrihed in Ref. (1) uses a r,z grid
in the calculation. The use of this grid makes the evaluation of flux surface
integrals difficult since 2-D interplation must be used to follow the magneﬁic
flux surface oun the r,z grid. The equilibrium calculation described in this
paper uses flux surface coordinates, which makes the evaluation of surface
integrals faster and more accurate. Also the use of this coordinate system
does not require as many grid points in the 2-D grid, thus reducing the
computational time. This is due, in part, to the ability to concentrate the
points in region where the flux sufface curvature i.s high. Also _the surface
integrals which are required during the equilibrium calculation can be computed
with more uniform accuracy, since there are the same number of points on each
surface. Other methods which use an r,z grid have problem computing flux
surface integrals near the o-point where the flux surface are small and may
encompass only a few grid points. Equilibria have been coﬁputed for tokamaks

using flux surface coordinates[7]. Also tokamak transport codes have used flux

surface coordinates in the equilibrium calculationsla].

In the calculation described in this péper the equilibrium is specified by
adabatic quantities. The main reason for using this method is that they are
used in the transport code described in Ref. (1). The basic method for

computing an axisymetric equilibrium when adiabatic quantities are used has
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been given by Grad[zl. In an axisymmetric plasma with scalar pressure it can

be shown that the plasma pressure, P is a function of ¥, the poloidal magnetic

flux function[sl. Also the toroidal magnetic flux function f defined by,
f=r Bp (1)

is a function of ¢ only[al, r 1s the distance from the axis of rotational

symmetry.
The magnetic field is given by

B=Vy x V0 + £V0 (2)

where 0 1s the toroidal angle. The ¥ function 1s described by the

Grad-Shafranov equation,

Vi dp 1 arg?
v. [ — = - 4 e e et— 3
Z (rz) B TR T - 3

There are basically two methods to specify a solution to equation (3).- One is
to specify the functions on the right hand gide, that is P(y) and £(¢y). 4An
alternate method, which is used in the calculations presented here, is to
specify some adiabatic quantities. A set of adiabatic quantities which 1s used
in this calculation consist of specifying two adiabatic functions, Qp and Q¢
and the range of the { function, The range of the p function is determined by
giving the o-point value, y,, and the yalue at the outer boundary, Y, . The
separatrix is defined as the y = 0 surface. One of the adiabatic functions

which 1s used here 1s proportional to the entropy enclosed by adjacent flux

surfaces.
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This will be called the entropy function. The function Sy 1is given by

2
_r@d% _d .3 _dv
51 f-l——rvp /-5 (5)

where V is the volume enclosed by a flux surface labeled by p. The volume
integral 1is over the volume enclosed by the flux surface. And the surface
integral is over the flux surface. Where p is a dimensionless independent

variable

Yo = ¥
2 . (6)

Given Qp(p) and Sl(p) the pressure P(p) can be obtained from equation (4). The

other adiabatic function which determines the toroidal magnetic flux is given

by,

Qe = £8, = ¥, 4 12q - (7

where q is the magnetic stability safety factor, and S, 1is given by

2 3 .
d“r 1 d d r
_I:T (8)

S, = —_
2 ITVp-I 2 dp
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This integral has a singularity at p = 1, because the separatrix goes to
r = 0. This integral is evaluated by summing the volumes enclosed by the grid
cells between two ad jacent surfaces using the average of r for the cell to
evaluate the 1/r2. This approximation to 1/r2 is inaccurate near r = 0,
however, everywhere 1/r2 appears in this calculation it 18 multiplied by £

which must be proportional to r2 near r = 0. Thus the combination f/r2 will

not have a singularity.

To complete the specification of the equilibrium some type of boundary
condition in the r,z plane must be specified. In this code this 1s done by
assuming that the outer flux surface is fixed. Two types of boundary
conditions can be used on the part of the boundary which is interesected by
open field lines. The first is to assume that the ends of the flux surfaces
are fixed. This is the appropriate boundary tondition if the open field lines
pass into a conductor. The other type of boundary condition which can be used

here is to assume tht the field lines become parallel to the z axis, 3y/9z = 0,

at this boundary.

The equilibrium calculation consist of two parts, a 2-D solution of the
Grad-Shafranov equation using finite elements in the flux sﬁrface coordinate
syste?, described in Section II, the other part of the calculation is the
solution of the 1-D flux surface averaged Grad-Shafranov equation described in
Section III. Section IV describes the coupling of the two part of thé

calculation. 1In Section V three examples of equilibria calculated by this

method are presented.
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ITI. Solution of the Grad-Shafranov
Equation on the y,A Grid

This section will describe the 2~D aspects of the equilibrium calculation.
The 2-D calculation altermates with the 1-D calculation which will be described
in the next section. The 1-D calculation provides the information needed on

the right hand side of equation (3), that is, P(p) and £(p).

To start the calculation an initial Xs A grid must be set up, that 1is, the
arrays r(xj,kl) and z(xj,xz) must be initialized. This is done by guessing at
the positions of the flux surfaces or inputting a grid from a previous
calculagion. The X,A coordinate system used here 1s not érthogomal. The
distribution of the A, points on éach X4 surface 1s somewhat arbitrary, however
a smooth distribution of points produces betger results. The procedure used
here starts by positioning the points on the separatrix and the outer flux
surface, fixed conductor. The'lz pointg on the remaining X3 surfaces are
positioned so that the A, points form a straight line. An example of a grid
generated in this manner 1s shown in Fig. 1. The X4 need not be evenly spaced.
Better results are obtained if the X3 are adjusted so that there are more X4
surfaces near the o-point and separatrix. In this calculation the plasma and
magnetic fields are assumed to be symmetric about z = 0. Thus the grid is only

set up in half of the r,z space.

A finite element method is uqed to compute § on the x,A grid. Each
quadrilateral of the grid 1s divided into two triangles. There are two
possible ways of dividing each quadrilateral into triangular finite elements.
The computer code determines which opposite corners of the quadrilateral are

closest and connects these corners to from the two triangles. This procedure
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produces two triangles with the least smount of elongation. This procedure is
done each time the grid points are repositioned. Thus each grid point can be
connected to as many as eight neighboring points and as few as four. The ¢
function in each element 1is described by a simple three parameter linear

function of r and z.

1f sz 1s the shape function for the X4 A4 point, then the y function is

approximated by,

Each sz has four to eight parts which are each linear function of r and z.

sz has the value 1 at Xg» Az and zero at all other grid points.

A Galerkin[9] method 1s used to obtain a matrix equation for the unknown
wjl‘ The Grad-Shafranov equation (3) is multiplied by each of the NjA and
integrated over the region of nonzero sz. As usual the left hand side of this
equation is integrated by parts to remove the second derivatives and replace
them with ptoducfs of two first derivatives. The resulting set of equa;ions

have the following matrix form.
Ay=3B (10)

The vector ¥ contains the unknowns w.‘lf-' Since each surface has the same number
of points and each point (j,2) is only connected to the %=1, £ and 2+1 point on
the j-1, j and j+l1 surface, the matrix A has nine bands. The grid was set up

in this way to make use of fast matrix inverters which exist for a nine banded

matrix. The elements of the bands are,
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d-r
agx=~-/ 7 "4 Wi, (1

Where k = (j-1)I+2¢, and L 1is the number of points on each x surface. The

elements of the B vector are,

3 2
- - 3 dp _ 1 dr df
by Anfdrsz.a‘.p. .EITZ_NJL_&,_ (12)

An ICCG method[lol is used to solve the matrix equation (10). An
iterative method is more compatible with this problem since the solution of the
linear matrix equation (10) is only one step in the overall iteration (between
1-D and 2-D equation). It is time consuming and unnecessarf to have a very
accurate solution to equation (10) at every iteration. Error parameters and
iteration limits which are input parameters for the ICCG subroutines are used
to control the number of iterations in the solution of equation (10). As the
overall iterations converge the mumber of iterations in the ICCG part will
become smaller. This is due to the fact that the initial guess at ¢ uséd by

the ICCG method is closer to the answer.

In some equilibrium calculations it becomes difficult to solve equation
(10). This is particular true of the highly elongated FRC equilibrium. 1In
order to accelerate the cdnvergence of the ICCG method some damping 1is
introduced into equation (10). This is done by adding an identity matrix times
a small quantity to the left hand side and an identity matrix times a small

quantity and qr'g‘,’_“ to the right hand side. Where q%‘;_“ 1s the y;, obtained at
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the last 2-D solution. This procedure is equivalent to introducing an

artificial time dependence in equation (10).

In order to preserve the nine banded structure of the matrix e at the
o-point, the o-point 1s represented by L points as the other surfaces. Based
on the observation that as one approaches the o-point the coupling of the point
in the A direction becomes large due to the close spacing, a strong artificial
second derivatve in the A direction is added to the problem at the o—point
only. This method can be checked by noting if the values of *1.1 are

approximately the same.

The reglon of the calculation in the x,A space is shown in Fig. 2.
X ranges from X,, o-point, to X,, the outer flux surface. ¥ equallto zero is
the separatrix. The A variable ranges from zero to w. The o-point corresponds
to the lower boundary on this figure which is at x,. The § function will be
approximately a constant along this boundary as described earlier. The left
hand boundary of Fig. (2) below X = 0 corresponds to the line from the o-point
inward to r = 0 at z = 0. The boundary condition which is applied here 1s that
dy/dz = 0. The left hand boundary of Fig.'(Z) above X = 0 corresponds to the
top boundary of the r,z grid, Fig. (1). There are two,type# of boundary
condit}on which can be applied here. One is 3y/3z = 0. The other type is to
fix ¢y along this boundary. This corresponds to the problem where the magnetic
fie;d lines pass into a rigid conductor. The top boundary of Fig. (2)
corresponds to the outer flux surface in the ﬁroblen, it is assumed to be fixed
and have a constant value of y,. The right hand side of Fig. (2) corresponds
to the line from the o-point to the outer flux surface along z = 0. The

boundary condition which is applied here i1s the symmetry conditiom 3¢782 = 0,
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The separatrix, x = 0, can be divided into two lines in the r,z space, the
outer curved line which end at r = 0, and the line r = 0. The boundary
condition ¢y = 0 is applied on the r = 0 1line. In the x,A space this boundary
condition is applied by setting y = O on the line from 0 to A at x = 0. There
are no boundary conditions applied to the curved part of the separatrix., 1Its ¢

value will become zero as the computation converges.

The next step after the y’s have been computed on the x,A gfid is the
repositioning of the grid point in r,z. The new minimum value of §, o-point,
is now determined. This minimum will be at z = 0. The minimum ¥ aqd its r
position is determined by quadratic interpolation. The new ¢, will not.be
exactly the specified value x,. The difference between these two quantities
can be used as a measure of convergence or a check of the accuracy of the
equilibrium. The ¢ values inside the separatrix are scaled so that the new ¥

at the o-point has the desired value.

Two different procedures are used to reposition the grid points. If the
new o-point is too far from its previous position, an attempt to move the
points along the A lines will scramble the points near the o-point. The
procedure which is used in this case is to move all the poiﬁts in the r
direction in order to place the o-point at the interpolated y minimum. If the
o-point position is near the old position then the following procedure is used
to reposition the points. The points are moved along a line of constant A to
form a more accurate y surface. From a line of given Ay the r positions form a
function r(¢jz), and the z positions forﬁ z(wjz). The new values of r and z of

a grid point are found by linear interpolation. This is done on each i, line
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and for each point, also the new o-point position is placed at the interpolated

Y minimum.

In order to damp oscillations which occur in some calculations during the

1-D 2-D iterations and insure convergence it was found that the { value used to

determine the new position of a grid point, w;z, should be obtained by mixing

‘J’jz and on

w;z = q sz + (a -1) X3 - (13)
For the FRC equilibria a must be about .3.

Once the points have been repositioned along the A lines to form new flux
surfaces some steps must be taken to insure a smooth ﬂisttibution of points on
each X surface. This procedure consists of moving the points along the
separatrix so that the points have a smooth distribution. Then the points on
the other surfaces are moved parallel on the flux surface so that the lines of
constant A are straight. Thus the lines of constant A inside the separatrix
will form straight lines from the separatrix to the o-point, and outsid; the
separatrix from the separatrix to the ocuter surface. Thus a new 2-D x,A grid

has been produced in which the yx surfaces are closer to being surfaces of

constant V.
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III. Solution of the Surface Averaged

Grad-Shafranov Equation

The 1-D flux surface averaged Grad—-Shafranov equation is needed to compute
§; which is needed to compute the new values of P from Qp and £ from Qz. The
1-D equation is a second order ODE for V, the volume, as a function of p. Its

derivation and solution will be described in this section.

To perform the surface averaging of the Grad-Shafranov equation the same
shape functions are used as was used in the 2-D problem. The Grad-Shafranov
equation is multiplied by the sum of all the shape functions sz with the same
"jJ, and integrated over the volume. This procedure of deriving the 1-D equation

insures consistency between the 1-D and 2-D equations. The resulting equation

is,
Vo 3
3 - . 3 dp . 1, d°r df 4
Idrz(ENJI)rz A“IdrEN“d¢'+2Ir2§,Nj"—f"" (14)

Putting in P and £ in terms of Qp and Q¢ yields the follo'wing tridiagonal

equation for Vj



Where;

- 1',0
ay = 3 t?j-uz =
8py-1/2 51,3-1/2

-9
ey = ; Qyj+1/z -
8054172 ST, 441/2
bj = - aj - Cj
where

1 d3r
. [ i, _ZN
57,1 ZApj [ 2 3 3o

Y
6,3 %,3-1/2 _ 57,3 Q¢,3-1/2 R3-1/2

v2 S%{g-llz V281 3172

Y
S6,1 ®,111/2 _ 57,4 &, 34172 Rir1/2
st ¥5 81, 141/2

The above integrals are over the reglion of nonzero sz.

The other function in equation (16) is

(16a)

(16b)

(16¢)

(17)

(4m8)

(19)
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S1,5+1/2 |2,
JJ+1/2 - _j_.__j a3r _LP_I_ (20)
8p511/2 2

The above integral is over the volume between surfaces pj+1 and pj. sl,j+1/2

is given by

Vi = V
3+l b
S1,5#¢1/2 = Moz (21)
where,

B141/2 = P41~ Py 22)
and Vj is the volume enclosed by the Py surface. Equation (15) is the form
used in the case when the 3y/3z = 0 boundary condition is used on the top
boundary in the r,z space. If the rigid conductor boundary condition is used,
then there will be an additional term in equation (15) due to a surface

integral over the top boundary.

Equation (15) is solved in two separate regioms. In éhis calculation
ther% can be plasma in both regions, inside the separatrix and between the
separatrix and outer wall. The first region is for 0 < p <1 (region enclosed
by separatrix). The boundary conditions for this region is that v(0) = 0 and
V(1) = Vg, where Vg is the volume enclosed b} the separatrix. Vg is obtained
form the 2-D solution. The second regfon 1s 1 < p < p, (region between

separatrix and outer flux surface). The boundary conditions for this region is
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V(1) = Vg and V(p,) = V,. Where V, i3 the volume enclosed by the outer flux

surface, which 1s a constant.

Since the coefficlents aj, bj and cj in equation (15) depend on vj through
sl,j+1/2’ an iteration method must be used to solve this equation. The
coefficients aj, bj and cy are determined using the last values of sl.j+1/2.
The equation is then solved for vj which from equation (21) gives new values of
sl,j+1/2' Now new ay, bj and cy can be computed, and equation (15) can be
solved again. During this iteration the quantities Q?j+1/2,'§§+1/2, s6,j and

S7.j are held fixed. These quantities come from the 2-D solution.

With Vj determined by solving Eq. (15) the 31,j+1/2 can be computed from
Eq. (21). S2'j+1/2 is obtained from Eq. (17) by assuming‘§%+1/2 does not
change during the 1-D calculation. Thus P and f can be obtained from equations

(4) and (7). The terms on the right hand side of the 2-D equation (3) can now

be determined.

IV. Summary of 1-D 2-D Iteration Procedure

The calculation starts with the specification of the Qp and Q¢ functions
and the values of § at the o-point and the outer wall., An initilal grid is
generated or read in from a previous calculation. Next the flux surface
average quantities which are needed for the l;D calculation are computed.
These are J_-]+1/2- S¢,4» S7,y» and E§+1/2 vhich are determined from the 2-D

grid. Then equation (15) 1s solved for VJ. This calculation gives a better
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value of sl’j and sz.j which are used to compute Pj and fj for the right hand
side of the 2-D Grad-Shafranov equation.

The 2~D equation (10) 1s now solved for *jz on.the x,A grid. The points .
are then moved to a new approximate ¢ flux surface. Then the grid points are

moved parallel to the flux surfaces to maintain a smooth distribution of points

on each flux surface.

*

With a new grid set up the first iteration is completed and the surface
integrals, ng+1/2, 85'1, S7.j and'§§+1/2, can be computed. The 1-D 2-D
iteration continues umtil a convergence criterion is satisfied. When the
average value of the grid point displacement is less than some small quantity

the equilibrium is assumed to be convered.

The repositioning of the x-point, where the separatrix goes to r = O, can
lead to slow convergence in some cases, in particular, the elongated FRC (field
reversed configuration). For these cases it was found that adding another step
.in this calculation can produce better convergence. This step consist of
minimizing the total energy of the system with respect to a displacement in the

z direction of the x-point. The displacement which was chosen has the form

65[1 - (r/rw)z] z/zg for z < z,

6(r,z) =

8,1 - (xre?] ot 2
s - r/rw) ] Tz—_—z—)- fol.’ z ) zs (23)
8
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This displacement is §5 for the x—point and reduces linearly to zero at z = 0
and at the top, z = z,. It also reduces quadraticly to zero at the wall radius

'I'.'w .

The energy integral which 1is evaluated is
W= fadr (ﬁ+ir) (2'4)
8r 2

where the integral is over the entire region of the calculation. W can be

assumned to be of the form

W8, () 4 s2 (@2

— (25)
7% s

§=0

where W, is the energy integral before this displacement, § = 0, The first and
second derivative are computed numerically by evaluating the integral (24) at
65 = + €, 0, and ~¢ where € 1s some small number and using finite differences
to compute the derivatives. Taking d/d§; of equation (25) and setting it to
zero will yleld the §; which minimizes the enmergy, this is

-5

§=0
5s -ﬁ

2
d“w
—_— . (26)

With §; now given, each point in the grid is now moved in the z direction by
the amount given by equation (23). This procedure is only used for the more

difficult FRC equilibrium., In these cases it is done every 1-D 2~D iteratiomn.



As a check of the accuracy of this procedure a Hill vortex solution was
used as a test case. This analytic equilibrium is given in reference (16). In
this test case the separatrix is assumed to be fixed, and only the equilibrium
insidé the separatrix is computed. For this equilibrium the presure, P, is a
linear function of ¢ and £ is assumed to be zero. The input for thia
equilibrium calculation, Qp, must be numerically computed. The volumes
enclosed by the analytic ¢y function are first mmerically computed, using
enough points to insure that the error in the volumes are much less than the
expected error in the equilibrium calculation. With the‘yolumes computed the
sl,j+1/2 can be computed, and with the given analytic P function Qp, the input

for the equilibrium calculation, can be determined.

After the code has com;uged an equilibri;m the *jz can be compared to the
analytic ¢y at each grid point. Four cases with spherical separatrix were run
with different grid sizes. The four cases were, (J = 5, L = 10), (J = 10,
L=20), (J= 20, L = 40) and (J = 40, L = 80) where J is the number of flux
surfaces and L 1s the.number of.points on each flux surface; The average.error
in ¢ ﬁpr these cases were 1.4%, 0.41Z, 0.12%, and 0.033% respectively. The
maximum error in ¢ for these cases were 4.0%, 1.08%Z, 0.35Z and 0.090Z
respectively. The number of 1-D 2-D iteration for these cases were 4, 4, 7,
and 17 respectively. The Cray-l computer timé for these cases were 0.1 sec.,

0.3 sec., 2.0 sec., and 35.0 sec., respectively,
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Also oblate and prolate Hill vortex solutions were tested. An oblate case
with separatrix radius at z = 0 of 50 cm and separatrix z of 10 cm at r = 0
gave accuracy very similar to the spherical cases. No damping was required to
obtain convergence in the ;pherical or oblate cases, however, a prolate cases
which was tested required some damping to obtain convergence. This case had a
separatrix radius at z = 0 of 10 cm and a separatrix z at r = 0 of 50 ecm. The

errors for the prolate cases were about twice that of the spherical cases.

Three equilibrium calculations are presented in this section. These
examples are of current experimental devices. Compact toroids can be divided
into two types, spheromaks and field reversed configurations (FRC). Spheromaks
are characterized by containing both poloidal and toroidal magnetic filelds
which are of approximately the same order of magnitude. FRCs contain only
poloidal fields. Two equilibrium calculation examples of spheromaks are

presented and one of a FRC.

Figure 3a shows the contours of coanstant y for an equilibrium similar to
the one produced in the CTIX experimentlll]. In this equilibrium the separatrix
is assumed to lie on the flux conserver which 1s made of copper. There is no
external or guide magnetic field in this example. This plaéma is produced by a
magnetized coaxial plasma gun[IZ]. The plasma is injected into the flux
congserver along the z axis through a hole in the flux conserver (at z = 20 in

Fig. 3a). This hole 18 not represented in this calculation.

Figure 3b is a plot of the plasma pressure at z = 0. Figure 3c is a plot
of the toroidal current at z = O, TFigure 3d is a plot of the poloildal magnetic

field at z = 0. Figure 3e is a plot of the toroidal magnetic field at z = O,



-29-
The poloidal magnetic field at r = 0, z = 0 has a value of -2.2 kG. The

. o=point radius is at 24.0 cm,

In this calculation there are 9 flux surfaces with 20 points on each flux
surface for a total of 180 points in the 2-D grid. This calculation took 17

1-D 2-D iteration for a total of approximately l.2 seconds on the CRAY-1

computer,

A meagsure of the consistency of this calculation is the error im §,, that
is, the diffefence between the value of § at the o~point as obtained from the
last 2-D calculation and that specified in the statement of the problem. 1In
this calculation these two numbers differ by .4Z. More iteratioms will not

improve this number.

Figure 4a shows the contours of constant § for an equilibrium similar to
that obtained in the proto S-1C Spheromak[13]. This field confiéuration, which
is produced by induction from a flux core, [14] contatns both poloidal and
toroidal magnetic fields. The flux core has a major radius of 30 cm. and a
minor radius of 6 ecm. In the experiment the core 1is enclosed.by a vacuum
ch#mber. There are external field coils outside the chambe;. The bound#ry
conditions would be difficult to simulate exactly with this code. These
boundary conditions are approximated in this calculation by a outer fixed flux
surface which has the same § value as the flux core. The top, z = 40, 1is
assumed to be a fixed conductor; i.e., the ends of the flux surfaces are fixed.

The external magnetic field which i1s simulated here has a value of 220G.
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Figure 4b is a plot of the pressure at z = 0. Figure 4c 1s a plot of the
toroidal current at z = Q. Figure 4d is a plot of the poloidal magnetic field

at z = 0, Figure 4e 13 a plot of the toroidal magnetic field at z = Q. The

poloidal magnetic field at r = 0 and z = 0 is -1.8 kG.

In this calculation there are 9 surface of constant ¢ inside the
separatrix and 4 outside the separatrix, for a total of 14 surfaces. Each flux
surface consist of 20 points. There i1s a total of 280 points in the 2-D grid.
This calculation took about 60 1-D 2-D iterations for a total of 5.0 seconds omn

the CRAY-1. The error in the o-point value of §y in this calculation is .06%.

The last example presented here is an example of a FRC, which has no
toroidal magnetic field. Very elongated FRC are produced in the field reverseg
theta pinch experiment an[5]. Figure 5a are plots of the flux surfaces of an
equilibrium similar to the one in FRX. fhe boundary conditions used at the
top, z = 50, is 9y/3z = 0. The theta-pinch coil which 1s 100 em long and has a
24.8 cm I.D. forms the outer flux surface., The passive mirror is simulated by
the smaller diameter at the top of Fig. 5a. This equilibrium has all ;he
plasma enclosed by the separatrix. It is characterized by large gradient in
the pressure at the separatrix, Fig. 5c, which produces a éharp peak in the
toro%gal current density at the separatrix, Fig. 5d. The length of the plasma,

in the z direction, is controlled by the value of Qp. Larger Qp_pushes the

separatrix to higher z.

The positioning of the point on tﬁe separatrix 1s important in this
calculation. There must be a adequate number of points in the reglon where the

separatrix goes to z = 0, In this calculation instead of placing the points
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uniformly along the separatrix, they are spaced so that the distance between

points is inversely proportional to the distance to the origin (r = 0, z = 0).

There are two approximate equilibrium conditions which characterize a FRC.

The first one of these is,[6]

t's/r:o - /2 _ (27)

Where r; is the separatrix radius at z = 0 and r, 1s the radius of the o-point.
In this calculation r, 1s 6.990 cm and rg is 9.840. Thus the relation (27) is

satisfied to about 0.5%. The other relation is an approximate pressure balance

relation,[lsl

1 Fey2
®>=1-3 (r_) (28)
tw
where
8> = L8 _B_ 4 - " (29)

wrg o B%/Bw

Where.r, is the radius of the wall. The above integral is over the area
encircled by r; at z = 0. B, is the magnetic field outside the separatrix at

z = 0, For the equilibrium shown in Fig. 5 <B> from equation (28) is .9213 and
<B> from equation (29) is .9188. They differ by 0.2Z. Another method of
checking the accuracy of our equilibrium, is to'check to see if there are jumps

in the quantity, sz/an + p, across the separatrix[17]. In this calculation

this jump is approximately 1.3%.
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In this calculation there are 10 flux surfaces inside the separatrix and
10 outside. Each surface is defined by 40 points. The 2-D gri@ consist of 800

points. This calculation took approximately 150 1-D 2-D iterations to converge

for a total of 70 seconds on the CRAY-1. The error. in the o-point is

approximately 0.4Z. The long thin equilibriums are more difficult to produce

then the ones with a more spherical separatrix. In this calculation the

xépoint 1s repositioned by the energy immization method in each 1-D - 2-D

iteration.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial products, process, or service’
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
’ States Government thereof, and shall not be used for advertising or product en-
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Figure Captions

X,A grid. Dark lines are surfaces of constant y. Dashed lines are
surfaces of constant A. Dotted lines denote boundary of finite

elements.

Boundary condition used on ¥, A grid for 2-D calculation.

CIX equilibrium; (a) x,A grid, (b) Pressure vs. r at z = 0,
(c) Toroidal current vs. r at z = 0, (d) Poloidal Magnetic field
va. r at z = 0, (e) Toroidal magnetic field vs. r at z = 0.

Proto S-1C equilibrium, (a) x,\ grid, (b) Pressure vs. r at z = 0,
(¢) Toroidal current vs. r at z = 0, (d) Poloidal Magnetic field
vs. r at z = 0, (e) Toroidal magnetic field vs. r at z = 0,

FRC equilibrium, (a) x surfaces. (b) Poloidal Magnetic field vs. r
at z = 0, (c) Pressure vs. r at z = 0, (d) Toroidal current vs. r at

z=0.
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